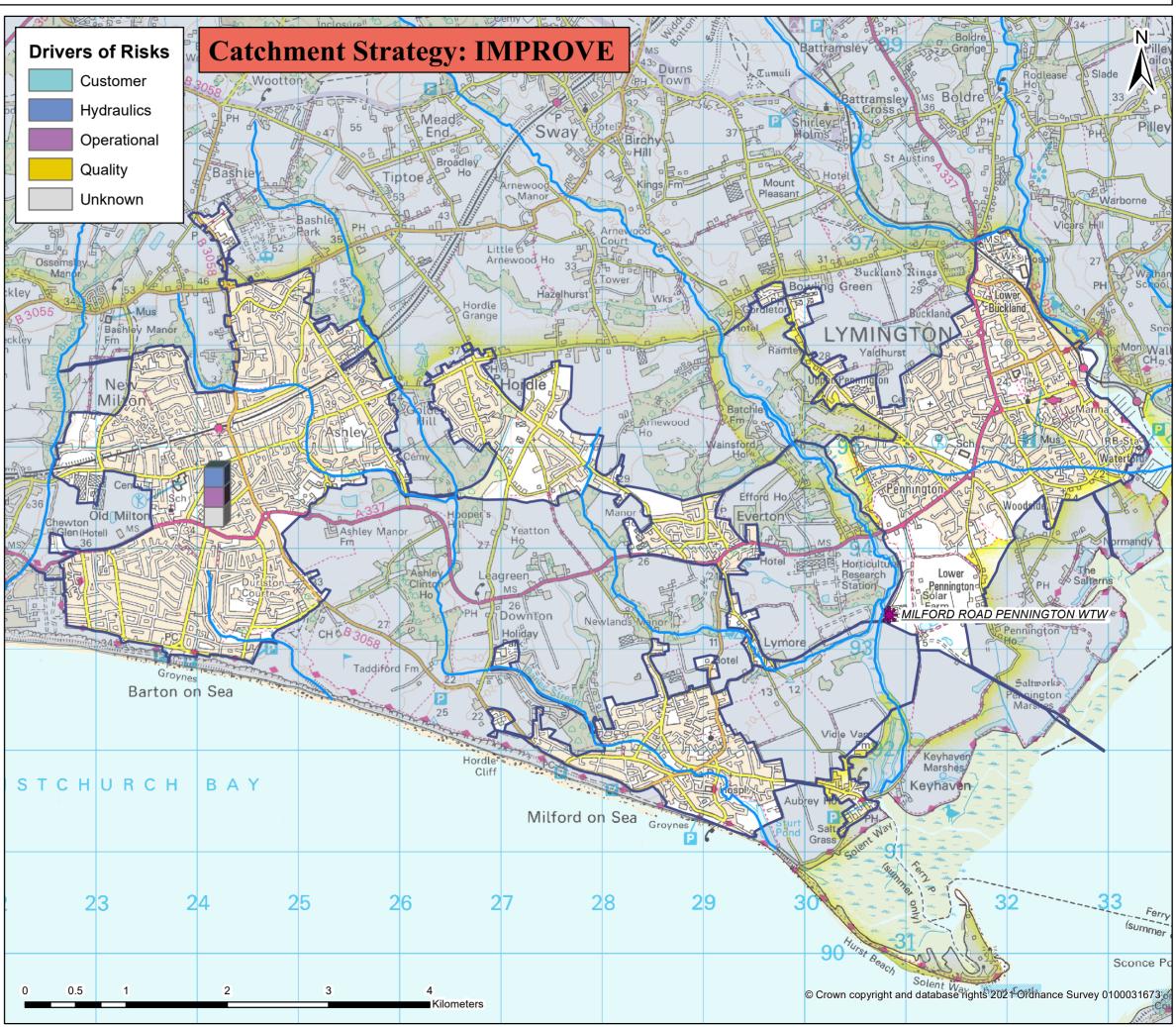


Drainage and Wastewater Management Plan

Pennington Wastewater System Plan

> from Southern Water.

Contents


- Wastewater System Map
- **Problem Characterisation**
- **Generic Options**
- **Outline Option Appraisal**
- **Investment Needs**
- Location of Potential Options

Pennington wastewater system: map and key facts

Population Equivalent (PE)	50,697
Discharge Waterbody	Long overland outfall into Solent
Number of Pumping Stations	52
Number of Overflows	12
Length of Sewer (km)	420.8
Catchment Reference	PENN

	BRAVA Results Table							
	Planning Objective	2020	2050					
1	Internal Sewer Flooding Risk	0						
2	Pollution Risk	1						
3	Sewer Collapse Risk	0						
4	Risk of Sewer Flooding in a 1 in 50 year storm	0	0					
5	Storm Overflow performance	2	2					
6	Risk of WTW Compliance Failure	0	0					
7	Risk of flooding due to Hydraulic Overload	0	1					
8	Dry Weather Flow Compliance	1	1					
9	Good Ecological Status / Potential	0						
10	Surface Water Management	0						
11	Nutrient Neutrality	2	2					
12	Groundwater Pollution	0						
13	Bathing Waters	0						
14	Shellfish Waters	NA						

Problem Characterisation Pennington (PENN)

This document describes the causes of the risks identified by the Baseline Risk and Vulnerability Assessment (BRAVA). The BRAVA results for this wastewater system are summarised in Table 1. The results indicate that flooding, pollution and water quality are the main concerns in this wastewater system. We have completed risk assessments for 2050 where we have the data and tools available to do so. For the other planning objectives, we will explore how we can predict future risks for the next cycle of DWMPs. All the risk assessment methods need to be reviewed after the first DWMPs have been produced with a view to improve the methods and data for future planning cycles.

Pla	nning Objectives	2020	Driver	2050
1	Internal Sewer Flooding Risk	0	-	
2	Pollution Risk	1	Operational	
3	Sewer Collapse Risk	0	-	
4	Sewer Flooding in a 1 in 50-year storm	0	-	0
5	Storm Overflow Performance	2	Hydraulic	2
6	WTW Water Quality Compliance	0	-	0
7	Flooding due to Hydraulic Overload	0	-	1
8	WTW Dry Weather Flow Compliance	1	Operational	1
9	Good Ecological Status / Good Ecological Potential	0	-	
10	Surface Water Management	0	-	
11	Nutrient Neutrality	2	Unknown	2
12	Groundwater Pollution	0	-	
13	Bathing Waters	0	-	
14	Shellfish Waters	NA	-	

Table 1: Results of the BRAVA for Pennington wastewater system

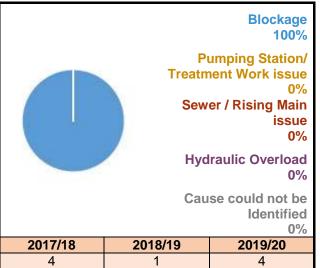
BRA	BRAVA Risk Band								
NA	Not Applicable*	*No issue to plannir							
0	Not Significant	within Wa							
1	Moderately Significant	System							
2	Very Significant								

*No issues relevant to planning objective within Wastewater System

Investment Strategy

The risks identified in this wastewater system mean that we have assigned the following investment strategy:

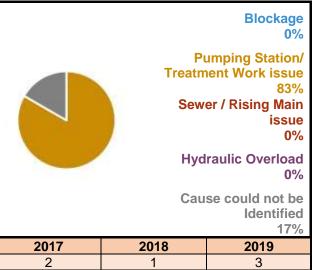
Improve


This means that we consider that the current performance of the drainage and wastewater system needs to be improved to reduce the impacts on our customers and/or the environment. We will plan investment to reduce the current risks by actively looking to invest capital funding in the short term to address current performance issues (and consider future risks when implementing improvements).

Planning Objective 1: Internal Sewer Flooding Risk

The number of internal sewer flooding incidents reported during the three years considered by the risk assessment are shown in Figure 1. The total number of connections in this wastewater system means there have been less than 1.68 incidents per 10,000 connections per year (a threshold set by Ofwat) so the risk is in the 'not significant' band.2

Figure 1: Number of internal flooding incidents per annum and causes



Planning Objective 2: Pollution Risk

The number of pollution incidents reported during the three years considered by the risk assessment are shown in Figure 2. The length of sewer in this wastewater system means there have been between 24.51 and 49.01 incidents per 10,000km per year (a threshold set by Ofwat) so the risk is in the 'moderately significant' band.

The primary driver for pollution is 'Operational' due to asset operational issues. Asset operational issues at our pumping stations and treatments works are the main cause of incidents, contributing to 83% of all incidents recorded in this wastewater system.

Figure 2: Number of pollution incidents per annum and causes

Planning Objective 3: Sewer Collapse Risk

The number of sewer collapses reported during the three years considered by the risk assessment are shown in Table 2. The length of sewer in this wastewater system means there have been less than 5.72 incidents per 1,000km per year (a threshold set by Ofwat) so the risk is in the 'not significant' band.

Table 2: Sewer collapses and rising main bursts

Sewer Collapse	2017/18	1
	2018/19	2
	2019/20	1
	2017/18	0
Rising Main Bursts	2018/19	0
	2019/20	0

Planning Objective 4: Sewer Flooding in a 1 in 50 Year Storm

The risk of flooding in a 1 in 50 year storm is not significant in 2020 or 2050. This is because our computer model of the sewer network indicate for 2020 that approximately200 - 300 properties within this wastewater system are in areas that could flood by water escaping from sewers.

Our wastewater networks are generally designed with capacity for up to a 1 in 30 year storm, hence flooding is expected to occur during more severe storms such as a 1 in 50 year event. Flooding will occur due to insufficient capacity of the drainage system either on the surface before it enters the drainage system, and/or from manholes, in people's homes or at a low point elsewhere in the system.

Planning Objective 5: Storm Overflow Performance

The storm overflow performance risk has been assessed as very significant for both 2020 and 2050. Table 3 shows the overflows that discharge above the low threshold set for storm overflow discharges to Shellfish Water, Bathing Water and inland rivers.

The primary driver for the Storm Overflow Performance is 'Hydraulic.'

Table 3: Overflows exceeding discharge frequency threshold per annum

	Number of	overflows	Threshold for number of discharges annum					
	2020	2050	Low Medium High					
Shellfish Waters	3 High	3 High	Less than 8	Between 8-10	10 or more			
Bathing Waters	0 Medium	1 High	Less than 3	Between 3-10	10 or more			
Freshwater	1 High	1 High	Less than 20	Between 20-40	40 or more			

Planning Objective 6: Wastewater Treatment Works Water Quality Compliance

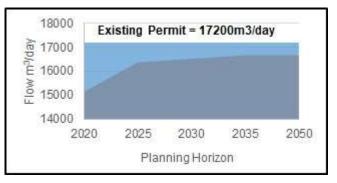
The risk of non-compliance with our wastewater quality permit has been assessed as not significant for both 2020 and 2050. This is because the wastewater treatment works has no record of compliance failure during the last three years (2018-2020).

Planning Objective 7: Flooding due to Hydraulic Overload

This is an assessment of the risk of flooding from sewers during a 1 in 30 year storm, and more frequent rainfall, to understand where flooding could occur. The risk of sewer flooding due to hydraulic overload is not significant for 2020. However the ri The annualised number of properties in areas at risk of flooding is shown in Table 4.

Table 4: Annualised number of properties at risk per 10,000connections.

Rainfall Return		of Properties Risk		l per 10,000 ections		
Period (yr)	2020	2050	2020	2050		
1 in 1	4	19	3	12		
1 in 2	10	31	4	12		
1 in 5	44	105	8	19		
1 in 10	87	199	8	19		
1 in 20	124	293	6	14		
1 in 30	218	356	7	12		
То	tal Annualis	36	88			


This indicates that the wastewater network currently has capacity for storm events for which the system was designed, but growth, creep and/or climate change will increase the risks in this wastewater system by 2050.

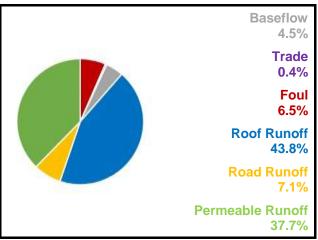
Planning Objective 8: Wastewater Treatment Works Dry Weather Flow Compliance

The risk of Wastewater Treatment Works Dry Weather Flow Compliance is moderately significant for both 2020 and 2050. This is because the average annual dry weather flow for 2017, 2018 and 2019 has been between 80% and 100% of the current permit, shown in Figure 3. The predicted DWF in 2050 is also expected to remain below 100% of the current permit.

The primary driver is 'Operational' because the contribution of infiltration to the baseline DWF is estimated to be above 50%, based on an equation using the recorded flow (Q90), the resident population reported in 2019 as well the

Figure 3: Recorded and predicted dry weather flow with existing permit

contribution of trade effluent and cesspits from the annual return for 2019.


Planning Objective 9: Good Ecological Status / Good Ecological Potential

This wastewater system is not hydraulically linked to a waterbody where wastewater operations are contributing to not achieving GES/GEP, therefore the risk is not significant.

Planning Objective 10: Surface Water Management

Figure 4 illustrates the sources of water flowing in the wastewater system during a 1 in 20 year storm. It shows that surface water runoff from roofs, road and permeable surfaces constitutes more than 88.6% of the flow in the sewers. The total contribution of foul water from homes is 6.5% with business contributing 0.4%. The baseflow is infiltration from water in the ground and makes up 4.5% of the flow in the system.

Planning Objective 11: Nutrient Neutrality

The risk to internationally designated habitat sites from this wastewater system is very significant in 2020 and 2050. This is because Natural England have advised that there is a risk to condition for the habitat sites that are hydraulically linked to our wastewater system, listed in Table 5.

Table 5: Habitat Sites hydraulically linked to wastewater system

Habitat Sites							
Solent and Dorset Coast	Phosphate permit review required Overflow Spills						
Solent & Southampton Water	No Threat/Remedy Identified or Anticipated						

Planning Objective 12: Groundwater Pollution

The risk of Groundwater Pollution is not significant. This is because the wastewater network in this wastewater system does not overlap with any groundwater Source Protection Zones (SPZ) used for water supply.

Planning Objective 13: Bathing Waters

The designated bathing waters that could be affected by discharges from this wastewater system are shown in Table 6, along with the current classification from the Environment Agency. The risks from this wastewater system

Table 6: Bathing Water annual results

Pathing Waters	Annual Results						
Bathing Waters	2017	2018	2019				
Christchurch Bay	Excellent	Excellent	Excellent				
Milford-on-sea	Excellent	Excellent	Excellent				

on these bathing waters is not significant. This is because all the designated bathing waters affected by this wastewater system have passed annual inspections.

Planning Objective 14: Shellfish Waters

The discharges from this wastewater system do not impact on any designated shellfish waters.

Southern Water August 2021 Version 1

Generic Options Assessment for: Pennington (PENN)

	Planning Objectives 8 Driver 8 Type of Generic Option Icon Take Reasons							Rosenne	Examples of Generic Options		
PO1	Internal Flooding	0	-	-	Measures	Categories Control / Reduce surface water run-off		Forward? Y	•	Natural Flood Management; rural land management and catchment management; SuDS including blue and green infrastructure; storm management	
PO2	Pollution Risk	1	Operational	-	Source (Demand)	Reduce groundwater levels		N	Reducing groundwater levels would reduce the risks from infiltration into the network. However, in practice, reducing groundwater levels will be detrimental to the environment, ground conditions and is prohibitively too costly to implement. For these reasons, this generic option has been discounted.	Reduce leakage from water supply pipes; pump away schemes to locally lower groundwater near sewer network	
PO3	Sewer Collapse	0	-	-	Measures (to reduce likelihood)	Improve quality of wastewater	0	N	None of the significant risks are caused by the quality of wastewater entering the wastewater system.	Domestic and business customer education; incentives and behaviour change (reduce Fats, Oils & Grease, wet wipes etc.); monitoring trade waste at source; on-site black water and/or greywater pre-treatment	
PO4	Risk of Sewer Flooding in 1 in 50 yr	0	-	0		Reduce the quantity / \swarrow Y -		-	Water efficient appliances; water efficient measures; blackwater and/or greywater re-use; treatment at source		
PO5	Storm Overflow Performance	2	Hydraulic	2	Pathway	Network Improvements		Y	-	Asset optimisation; additional network capacity; storage; separate flows; structural repairs; re-line sewer pipe and manholes; smart networks.	
PO6	Risk of WTW Compliance Failure	0	-	0	(Supply) Measures (to reduce likelihood)	Improve Treatment Quality	(8-8)	Y	-	Increase treatment capacity, rationalisation of treatment works (centralisation / de-centralisation); install tertiary plant; UV plant or disinfection facilities; innovation; improve Technical Achievable Limits; new WTWs	
PO7	Annualised Flood Risk/Hydraulic Overload	0	-	1	internitood)	Wastewater Transfer to treatment elsewhere	M	N	The causes of risk are not due to where our systems discharge to the environment or our ability to increase the capacity to connect more homes. Transferring wastewater for treatment elsewhere will not reduce any of the significant risks in this catchment.	Transfer flow to other network or treatment sites; transport sewage by tanker to other sites	
PO8	DWF Compliance	1	Operational	1		Mitigate impacts on Air Quality		N/A	Not included in first round of DWMPs	Carbon offsetting; noise suppression /filtering; odour control and treatments	
PO9	Achieve Good Ecological Status	0	-	-	Receptor Measures	Improve Land and Soils	<u> </u>	N/A	Not included in first round of DWMPs	Sludge soil enhancement	
PO10	Improve Surface Water Management	0	-	-	(to reduce consequences)	Mitigate impacts on receiving waters	∦ ₽	Y	-	River enhancement, aeration	
PO11	Secure Nutrient Neutrality	2	Unknown	2		Reduce impact on properties		Y	-	Property flood resilience; non-return valves; flood guards / doors; air brick covers	
PO12	Reduce Groundwater Pollution	0	-	-	Other	Study / Investigation	0°	Y	-	Additional data required; hydraulic model development; WQ monitoring and modelling	
PO13	Improve Bathing Water Quality	0	-	-							
PO14	Improve Shellfish Water Quality	NA	-	-						August 2021 Version 1	

Pennington Wastew	vater System - (Dutline Options	Apprais	al								
Generic Option	Location of Risk	Planning Objective and Description of Risk	Option Reference	Description	Further Description	Unconstrained Option?	Constrained Option?	Feasible Option?	Net Benefits	Estimated Cost	Preferred Option	Best value / Least cost or Reasons for Rejection
Control/ Reduce surface water entering the sewers	Catchment Wide/ L4	PO5, PO7 - Hydraulic Drivers	PENN.SC01.1	Natural Flood Management	Storing water by planting hedgerows and trees, slowing water through bunds/ditches/ponds, increasing soil infiltration vis improved soil structure, intercepting rainfall via increased vegetation - areas identified using Hydraulic model.	No						Cost Effective
Control/ Reduce surface water entering the sewers	Catchment Wide/ L4	PO5, PO7 - Hydraulic Drivers	PENN.SC01.2	Rural Land Management	Large scale eco-system restoration, farming principles to increase biodiversity and enrich soils, rewilding - areas identified using Hydraulic model.	No						Cost Effective
Control/ Reduce surface water entering the sewers	Catchment Wide/ L4	PO5, PO7 - Hydraulic Drivers	PENN.SC01.3	Changes in Rural Land Drainage	Swales, sediment traps, bunds, ponds, wetland/constructed farm - areas identified using Hydraulic model.	No						Cost Effective
Control/ Reduce surface water entering the sewers	Catchment Wide/ L4	PO5, PO7 - Hydraulic Drivers	PENN.SC01.4	Surace Water Seperation	Removal of connected surface water into the sewer network at source.	No						Cost Effective
Control/ Reduce surface water entering the sewers	Catchment Wide/ L4	PO5, PO7 - Hydraulic Drivers	PENN.SC01.5	SuDS	Installation of SuDS - areas identified using Hydraulic model.	No						Cost Effective
Control/ Reduce surface water entering the sewers Control / Reduce groundwater infiltration	Catchment Wide/ L4	PO5, PO7 - Hydraulic Drivers	PENN.SC01.6	Rain Water harvesting	Collect rainwater from roofs and other paved surfaces for use on site.	No						Cost Effective and Risk and uncertainty - future resilience
Improve quality of wastewater entering sewers (inc reducing FOG, RAG, pre-treatment, trade waste)												
Control / Reduce the quantity / flow of wastewater entering sewer system	Catchment Wide	PO8 (2050) - Dry Weather Flow	PENN.SC04.1	Customer Incentive Programmee	Customers incentivised to reduce their consumption rate through bill reductions or voucher schemes.	No						Cost Effective, Environmental risk mitigatable and Risk and uncertainty - future resilience
Control / Reduce the quantity / flow of wastewater entering sewer system	Catchment Wide	PO8 (2050) - Dry Weather Flow	PENN.SC04.3	Water Efficient Measures	Use/promote/providing water efficiency measures to domestic and business customers.	Yes	No					Environmental - Strategic Environmental Assessment
Control / Reduce the quantity / flow of wastewater entering sewer system	Catchment Wide	PO8 (2050) - Dry Weather Flow	PENN.SC04.4	Blackwater Reuse	Reuse of wastewater from toilets.	Yes	No					Engineering and Cost
Control / Reduce the quantity / flow of wastewater entering sewer system	Catchment Wide	PO8 (2050) - Dry Weather Flow	PENN.SC04.5	Greywater Reuse	Reuse of wastewater from sinks, baths, washing machines and other kitchen appliances.	Yes	No					Performance and Sustainability
Network Improvements (eg increase capacity, storage, conveyance)	Catchment Wide	PO5, PO7 - Hydraulic Drivers & PO8 - Dry Weather Flow	PENN.PW01.1	Separate Flows (WfL-H)	Study / Investigation: Identify suitable location/s for surface water separation in the Pennington catchment (update hydraulic model) Collaborate to identify suitable location/s to separate foul and surface water systems.	Yes	Yes	Yes	Minor Positive +	£TBC - With Partners	No	Best Value
Network Improvements (eg increase capacity, storage, conveyance)	Lymington Area	PO5, PO7 - Hydraulic Drivers & PO8 - Dry Weather Flow	PENN.PW01.2	Separate Flows/Relining sewers	Study / Investigation: Identify suitable location/s in Lymington for sewer relining to prevent saline intrusion (update hydraulic model) Collaborate to identify suitable location/s to for sewer relining to prevent saline intrusion.	Yes	Yes	Yes	Minor Positive +	£TBC - With Partners	No	Best Value
Network Improvements (eg increase capacity, storage, conveyance)	Catchment Wide	PO5, PO7 - Hydraulic Drivers	PENN.PW01.3	Additional Storage Capacity	Construction of online/offline storage as stipulated point across the catchment, as outlines in the hydraulic model - using DAP results.	No						Risk and uncertainty - future resilience
Network Improvements (eg increase capacity, storage, conveyance)	Catchment Wide	PO5, PO7 - Hydraulic Drivers	PENN.PW01.4	Additional Conveyance Capacity	Based on results of hydraulic model (option PENN.	No						Risk and uncertainty - future resilience
Network Improvements (eg increase capacity, storage, conveyance)	Northern Lymington	PO4 and PO7 - Growth	PENN.PW01.5	Diversion sewer	DAP Option.	Yes	No					Feasibility and Risk
Network Improvements (eg increase capacity, storage, conveyance)	Waterloo Road, Lymington	PO4 and PO7 - Growth	PENN.PW01.6	Online tank and sewer regrade	DAP Option.	Yes	No					Feasibility and Risk
Network Improvements (eg increase capacity, storage, conveyance)	Saltgrass Lane	PO4 and PO7 - Growth	PENN.PW01.7	Increase manhole size	DAP Option.	Yes	No					Feasibility and Risk
Network Improvements (eg increase capacity, storage, conveyance)	School Lane and Lymore Valley	PO4 and PO7 - Growth	PENN.PW01.8	Regrading and upsizing	DAP Option.	Yes	Yes	Yes	Major Positive +++	£80K	Yes	Best Value
Network Improvements (eg increase capacity, storage, conveyance)	Ashely Common Road	PO4 and PO7 - Growth	PENN.PW01.9	Upsizing	DAP Option.	Yes	Yes	Yes	Major Positive +++	£380K	Yes	Best Value
Network Improvements (eg increase capacity, storage, conveyance)	Beechwood Avenue and Marley Avenue	PO4 and PO7 - Growth	PENN.PW01.10	Upsizing	DAP Option.	Yes	Yes	Yes	Major Positive +++	£605K	Yes	Best Value
Network Improvements (eg increase capacity, storage, conveyance)	Milford Road Pennington WTW	PO4 and PO7 - Growth	PENN.PW01.11	Storage	DAP Option.	Yes	Yes	Yes	Major Positive +++	£660K	Yes	Best Value
Network Improvements (eg increase capacity, storage, conveyance)	Peters Lane New Milton WPS	PO2- Pollution Risk	PENN.PW01.12	Maintenance Programme WPS	Improve resilience: Review operation and maintenance of Peters Lane New Milton pumping station to improve resilience.	Yes	Yes	Yes	Minor Positive +	£235K	Yes	Best Value
Network Improvements (eg increase capacity, storage, conveyance)	Holly Lane Ashely WPS	PO2 Pollution Risk	PENN.PW01.13	Maintenance Programme WPS	Improve resilience: Review operation and maintenance of Holly Lane Ashely pumping station to improve resilience.	Yes	Yes	Yes	Minor Positive +	£235K	Yes	Best Value
Network Improvements (eg increase capacity, storage, conveyance)	BECTON LANE BARTON ON SEA	Flooding and spill assessments - PO5	PENN.PW01.14	Storage	The model has a Medium risk DAP confidence score of 3 and was last verified in 2013.	No						Risk and uncertainty - future resilience
Network Improvements (eg increase capacity, storage, conveyance)	HIGH STREET LYMINGTON CSO	Flooding and spill assessments - PO5	PENN.PW01.15	Storage	Use Hydraulic Model to identify storage volume needed to prevent the high spilling CSO from discharging.	Yes	Yes	Yes	Major Positive +++	£1,000K	Yes	Best Value
Network Improvements (eg increase capacity, storage, conveyance)	LYMORE CSO	Flooding and spill assessments - PO5	PENN.PW01.16	Storage	Use Hydraulic Model to identify storage volume needed to prevent the high spilling CSO from discharging.	Yes	Yes	Yes	Major Positive +++	£1,000K	Yes	Best Value
Network Improvements (eg increase capacity, storage, conveyance)	MILFORD ROAD PENNINGTON WTW	Flooding and spill assessments - PO5	PENN.PW01.17	Storage	Use Hydraulic Model to identify storage volume needed to prevent the high spilling CSO from discharging.	Yes	Yes	Yes	Major Positive +++	£1,000K	No	Best Value
Network Improvements (eg increase capacity, storage, conveyance)	Catchment Wide	PO8 (2050)- Dry Weather Flow	PENN.PW01.18	Pipe Rehabilitation Programme	Relining/improving structural grades of sewers across the catchment.	Yes	No					Environmental - Strategic Environmental Assessment

Pennington Wastew			Applais									
Generic Option	Location of Risk	Planning Objective and Description of Risk	Option Reference	Description	Further Description	Unconstrained Option?	Constrained Option?	Feasible Option?	Net Benefits	Estimated Cost	Preferred Option	Best value / Least cost or Reasons for Rejection
mprove treatment capacity and quality at existing works or develop new WTWs)	Pennington WTW	PO8 (2050) - Dry Weather Flow	PENN.PW02.1	Increase Treatment Capacity	Increasing the treatment capacity at the treatment works, to ensure permit is below 80% and reduced risk of exceeding.	Yes	No					Operational
mprove treatment (capacity and quality at existing works or develop new WTWs)	Effected Designated Sites/Pennington WTW	PO11 - Nutrient Neutrality	PENN.PW02.2	Install P removal tertiary plant	Currently no Phospahte permit.	No						Risk and uncertainty - future resilience
mprove treatment (capacity and quality at existing works or develop new WTWs)	Effected Designated Sites/Pennington WTW	PO11 - Nutrient Neutrality	PENN.PW02.3	Install N removal tertiary plant	Remove more N from final effluent, past the currently allowed 9.	No						Risk and uncertainty - future resilience
mprove treatment (capacity and quality at existing works or develop new WTWs)	Pennington WTW	PO5 - Storm Overflow Performance PO11 - Nutrient Neutrality	PENN.PW02.4	Optimisation of Treatment Process	Optimising treatment process by increasing full flow to treatment of works.	Yes	No					Operational
mprove treatment (capacity and quality at existing works or develop new WTWs)	Pennington WTW	PO2, PO8 - Operational PO5, PO7 - Hydraulic	PENN.PW02.5	De-centralisation of Treatment	Breaking up of sewer system into smaller catchments that only cover the small towns, rather than Pennington which covers seevral of these developments.	No						Risk and uncertainty - future resilience
mprove treatment (capacity and quality at existing works or develop new WTWs)	MILFORD ROAD PENNINGTON WTW	PO8 (2050)- Dry Weather Flow	PENN.PW02.6	Permit Review	Increase capacity of the Wastewater Treatment Works (WTW).	Yes	Yes	Yes	Minor Positive +	£2,385K	Yes	Best Value
Wastewater Transfer												
Vitigate impacts on Air Quality												Not included in the first round of DWMPs
(e.g. Carbon neutrality, noise, odour) mprove Land and Soils												Not included in the first round of DWMPs
Mitigate impacts on Water Quality	Effected Designated Sites/Pennington WTW	PO11 - Nutrient Neutrality	PENN.RC03.1	Catchment permits	Reduce consented permit levels for nutrients and solids in the final effluent from treatment works.	No						Do customer support it and Risk and uncertainty - future resilience
Vitigate impacts on Water Quality	Effected Designated Sites	PO11 - Nutrient Neutrality	PENN.RC03.2	River enhancement and mitigation	Enhance river upstream of catchment to provide attenuation of flows, limiting unconsented spills from CSOs, and providing opportunity for natural nutrient removal.	No						Cost Effective
Mitigate impacts on Water Quality	Effected Designated Sites/Pennington WTW	PO11 - Nutrient Neutrality	PENN.RC03.3	Efflent re-use	Re-use of effluent from site - pumping of this effluent to potable process treatment works.	No						Cost Effective and Deliver the required outcome
Reduce consequences Properties (e.g. Property Flood Resilience)	Catchment Wide	PO7 - Hydraulic Drivers	PENN.RC04.1	Flood Mitigation for Flooding	Flooding mitigation to consider options (but not limited to); Non-return Values, Smart Airbricks, Flood Doors.	Yes	No					Operational
Study/ investigation to gather more data	Catchment Wide	PO5, PO7 - Hydraulic Drivers & PO8 - Dry Weather Flow	PENN.OT01.1	Further Study/Investigation	Futher Study/Investigation - Identifying ideal locations to separate foul and surface water systems.	Yes	No					Environmental - Strategic Environmenta Assessment
Study/ investigation to gather more data	Catchment Wide	PO8 (2050)- Dry Weather Flow	PENN.OT01.2	Further Study/Investigation CCTV Survey - Condition Assessment	Investigation work to determine the structural condition of the sewer network within the catchment.	Yes	No					Operational
Study/ investigation to gather more data	CSOs - Becton Lane Barton on Sea; High Street Lymington; Lydmore; Milford Road Pennington.	PO5 - High Spilling CSOs	PENN.OT01.3	Further Study/Investigation	Failing CSOs - EDM data shows spills are greater than threshold - however, predicted model spills on Hydraulic Model has a spill frequency less than the threshold.	Yes	No					Operational
Study/ investigation to gather more data	Solent and Dorset Coast Solent & Southampton Water	PO11 - Nutrient Neutrality	PENN.OT01.4	Further Study/Investigation	In order to take forward any unconstrained option - PENN.	Yes	No					Operational
Study/ investigation to gather more data	PENN FC08 - BECTON LANE BARTON ON SEA CEO	Flooding and spill assessments - PO5, PO13	PENN.OT01.5	Storage (FC08 - BECTON LANE BARTON ON SEA CEO)	Use Hydraulic Model to identify storage volume needed to prevent the high spilling CSO from discharging.	Yes	Yes	Yes	Major Positive +++	£1,000K	Yes	Best Value
Study/ investigation to gather more data	PENN FC09- LYMINGTON SLIPWAY PENNINGTON CSO	Flooding and spill assessments - PO5, PO13	PENN.OT01.6	Storage (FC09- LYMINGTON SLIPWAY PENNINGTON CSO)	Use Hydraulic Model to identify storage volume needed to prevent the high spilling CSO from discharging.	Yes	Yes	Yes	Major Positive +++	£1,000K	Yes	Best Value
Study/ investigation to gather more data	PENN FC010 - HIGH STREET LYMINGTON CSO	Flooding and spill assessments - PO5, PO13	PENN.OT01.7	Storage (FC010 - HIGH STREET LYMINGTON CSO)	The model has a Medium risk DAP confidence score of 3 and was last verified in 2013.	Yes	No					Feasibility and Risk
Study/ investigation to gather more data	PENN FC11 - LYMORE CSO	Flooding and spill assessments - PO5, PO13	PENN.OT01.8	Storage (FC11 - LYMORE CSO)	The model has a Medium risk DAP confidence score of 3 and was last verified in 2013.	Yes	No					Feasibility and Risk
Study/ investigation to gather more data	Catchment Wide	PO5- Storm Overflow	PENN.OT01.9		Study / Investigation: Update and re-verify the Pennington Hydraulic Model to improve model confidence.	Yes	Yes	Yes	Minor Positive +	£225K	Yes	Best Value
Study/ investigation to gather more data	Solent and Dorset Coast Solent & Southampton Water	PO11 - Nutrient Neutrality	PENN.OT01.10	Nutrient Budget	Study / Investigation: Develop a nutrient budget and investigate the risks and sources impacting these named Habitat sites.	Yes	Yes	Yes	Minor Positive +	£75K	Yes	Best Value

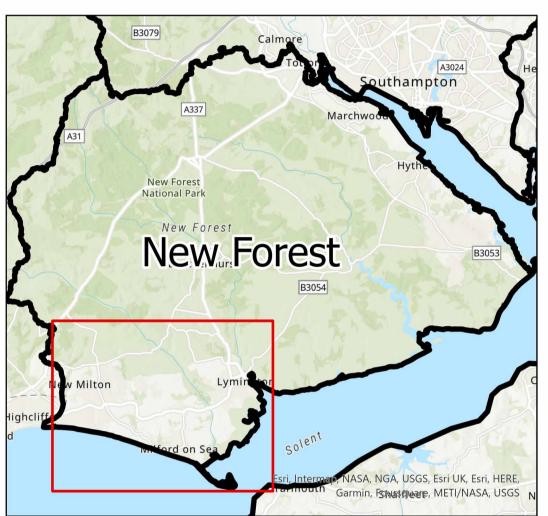
Drainage and Wastewater Management Plan (DWMP)

DWMP Investment Needs

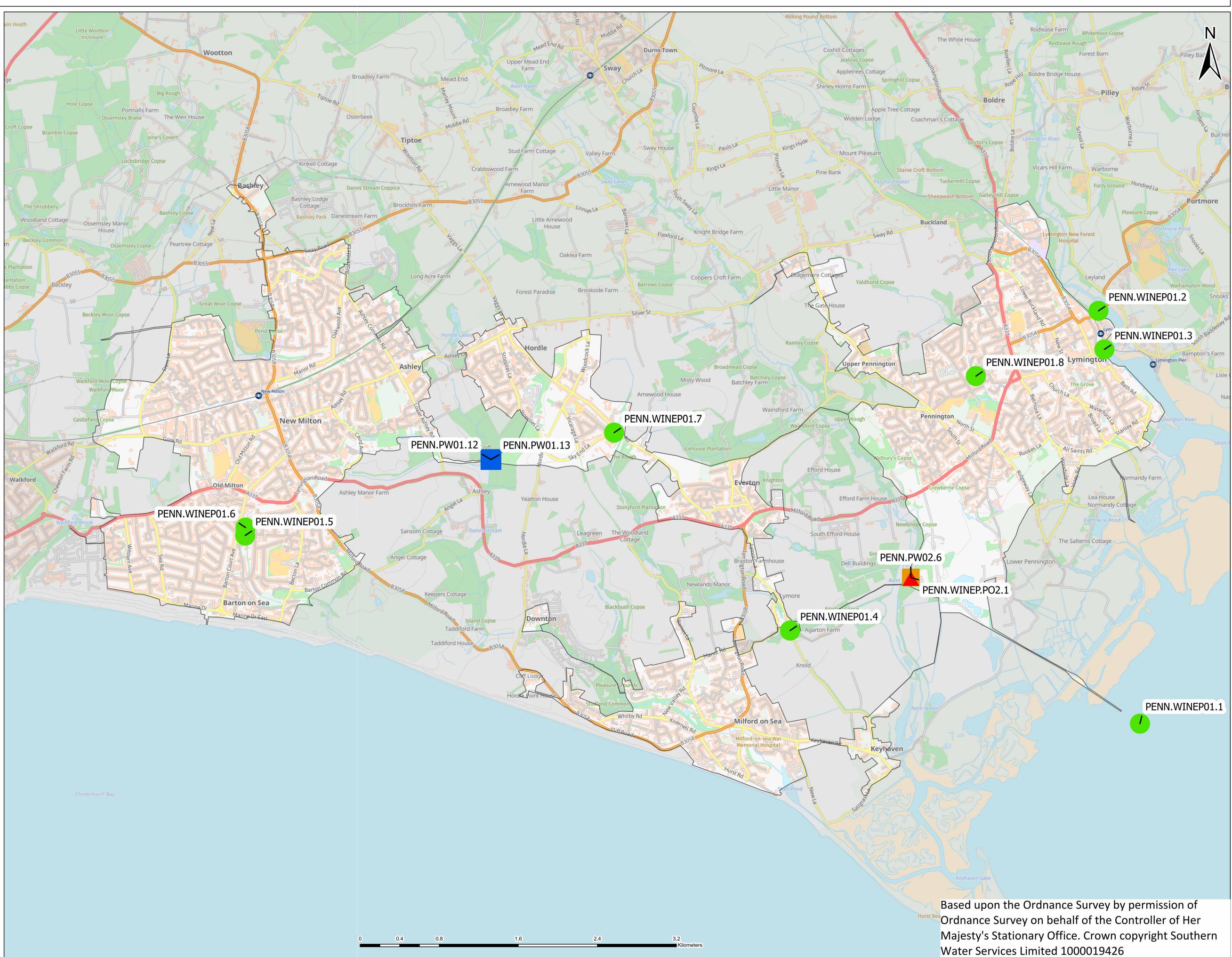
- 1. The options listed in the DWMP Investment Needs below are the preferred options in our DWMP. They will need further refinement as we implement the DWMP to confirm the exact location and scope of action needed, and the cost.
- 2. The costs are indicative costs for planning purposes only. The basis for the cost estimates, including assumptions and uncertainties, are explained in our DWMP Investment Plans.
- 3. The table of Investment Need provides an indicative cost so we know what level of funding is needed to reduce the risks. It is not a commitment to fund or deliver any option.
- 4. The Indicative Timescale is when the investment is needed. Some options may take several investment periods to achieve the desired outcomes.
- 5. Potential Partners have been identified in the table of Investment Needs. This is to indicate where there may be opportunities for us to work with these partners when developing and delivering these options. It is not a commitment by any of the partners to work with us.
- 6. These options will inform our future business plans as part of the Ofwat periodic review process to secure the finance to implement these options.
- 7. The options listed are prioritised by the method stated in the Programme Appraisal Technical Summary.

Date : May 2023 Version : 1.0

Reference		Wastewater System (L3)	Location	Option	Indicative Cost	Indicative Timescales	Potential Partners	Applicable Planning Objectives
New Forest								
Pennington								
PENN.PW01.8	New Forest	Pennington	School Lane and Lymore Valley	Growth scheme from our Drainage Area Plan (DAP): Upsize 67m of existing sewer to 675mm diameter sewer	£80K	AMP9	-	PO4 PO7
PENN.PW01.9	New Forest	Pennington	Ashely Common Road	Growth scheme from our Drainage Area Plan (DAP): Upsize 455m of existing sewer to 375mm diameter	£380K	AMP9	-	PO4 PO7
PENN.PW01.10	New Forest	Pennington	Beechwood Avenue and Marley Avenue	Growth scheme from our Drainage Area Plan (DAP): Upsize 728m of existing sewer to 525mm diameter	£605K	AMP9	-	PO4 PO7
PENN.PW01.11	New Forest	Pennington	Milford Road Pennington WTW	Flood Alleviation: Separate or attenuate excess rainwater in sewer network using Sustainable Drainage Systems (SuDS) to reduce risk of flooding (Costs based on storage solution but surface water separation is our preferred approach)	£660K	AMP9	-	PO4 PO7
PENN.PW01.12	New Forest	Pennington	Peters Lane New Milton WPS	Improve the operational resilience of wastewater pumping station (WPS) to reduce pollution incidents	£235K	AMP8 onwards	-	PO2
PENN.PW01.13	New Forest	Pennington	Holly Lane Ashely WPS	Improve the operational resilience of wastewater pumping station (WPS) to reduce pollution incidents	£235K	AMP8 onwards	-	PO2
PENN.PW02.6	New Forest	Pennington	Pennington WTW	Increase capacity to allow for planned new development	£4,000K	AMP8	Environment Agency	PO8
PENN.OT01.9	New Forest	Pennington	System Wide	Improve the Hydraulic Model: Surveys and reverification of model to improve confidence and accuracy	£225K	AMP8	New Forest District Council New Forest National Park Authority	PO5 PO7
PENN.WINEP01.1	New Forest	Pennington	MILFORD ROAD PENNINGTON SSO	Reduce impact from storm spills from MILFORD ROAD PENNINGTON SSO through wetland creation and/or sewer lining to reduce infiltration of groundwater	£24,275K	AMP8	-	PO5 PO14
PENN.WINEP01.2	New Forest	Pennington	STATION STREET LYMINGTON NO 1 CSO	Reduce the number of storm discharges from STATION STREET LYMINGTON NO 1 CSO by creating below-ground storage	£1,135K	AMP11	-	PO5
PENN.WINEP01.3	New Forest	Pennington	HIGH STREET LYMINGTON CSO	Reduce the number of storm discharges from HIGH STREET LYMINGTON CSO by creating below-ground storage	£1,515K	AMP11	-	PO5
PENN.WINEP01.4	New Forest	Pennington	LYMORE CSO	Reduce impact from storm spills from LYMORE CSO through wetland creation and/or sewer lining to reduce infiltration of groundwater	£6,435K	AMP10	-	PO5
PENN.WINEP01.5	New Forest	Pennington	SUNNYFIELD ROAD BARTON ON SEA CSO	New or improved screen to reduce aesthetics impacts from storm discharges at SUNNYFIELD ROAD BARTON ON SEA CSO	£130K	AMP12	-	PO5
PENN.WINEP01.6	New Forest	Pennington	FRIARS WALK BARTON ON SEA CSO	Reduce impact from storm spills from FRIARS WALK BARTON ON SEA CSO through wetland creation and/or sewer lining to reduce infiltration of groundwater	£3,165K	AMP12	-	PO5


Reference		Wastewater System (L3)	Location	Option	Indicative Cost	Indicative Timescales	Potential Partners	Applicable Planning Objectives
PENN.WINEP01.7	New Forest	Pennington	SKY END LANE HORDLE CSO	Reduce impact from storm spills from SKY END LANE HORDLE CSO through wetland creation and/or sewer lining to reduce infiltration of groundwater	£2,815K	AMP11	-	PO5
PENN.WINEP01.8	New Forest	Pennington	SOUTHERN ROAD PENNINGTON CSO	Reduce impact from storm spills from SOUTHERN ROAD PENNINGTON CSO through wetland creation and/or sewer lining to reduce infiltration of groundwater	£2,865K	AMP12	-	PO5

Drainage and Wastewater Management Plan: Location of Potential Options PENNINGTON Wastewater system in New Forest River Basin Catchment


(i) This map should be read in conjunction with the list of Investment Needs for this wastewater system

(ii) The areas shown on this map are the potential locations for the options. The location of the risk may be elsewhere in the system.

(iii) Labels for each location are the option references in the list of Investment Needs (iv) Drainage Area Plan (DAP) options on flooding and growth are not shown.

Customer Education Pipe Rehabilitation Asset Resilience Wastewater Treatment WINEP Nutient Neutrality WINEP Storm Overflows

Southern Water